Geometry

Geometry

Students in Geometry understand logical reasoning. They analyze relationships in lines, triangles, quadrilaterals, polygons and circles. They construct geometric figures and analyze three-dimensional figures.

Examples: Prove the Pythagorean Theorem Construct a square

Algebra

Students use algebra and the coordinate plane to explore geometry. They find equations for geometric figures such as parallel lines and circles.

Example: Find a line perpendicular to $y = -\frac{4}{3}x - 1$

Write the equation of a circle with radius 6, centered at (2, 5)

Trigonometry

Students understand right triangle trigonometry and use relationships to solve for missing sides and angles of right triangles.

Examples: In a 45-45-90 right triangle, if one leg measures 6 in, what is the measure of the other two sides?

Find sin 60°

Measurement

Students find and use formulas for perimeter, area, surface area and volume for a variety of figures. They will solve problems using geometric reasoning.

Examples: Find the distance between (-3, 7) and (4, 2)

Find the volume of a cone with a radius of 6 in. and a height of 8 in.

USOE Secondary Mathematics—Parent Doc	
Geometry	
Prove the Pythagorean Theorem: (one possibility) $2ab + a^2 + b^2 = 4(\frac{1}{2}ab) + c^2$ $2ab + a^2 + b^2 = 2ab + c^2$ $a^2 + b^2 = c^2$	Construct a square: This can be done with
Algebra	
Find a line perpendicular to $y = -\frac{4}{3}x - 1$	Write the equation of a circle with radius 6, centered at (2, 5)
$m = \frac{-4}{3}$ Any line with slope $\frac{3}{4}$ will do such as:	$(x-h)^{2} + (y-k)^{2} = r^{2}$ $(x-2)^{2} + (y-5)^{2} = 36$
$y = \frac{3}{4}x + 2 \text{ or}$	
3x - 4y = 4	
Trigonometry	
In a 45-45-90 right triangle, if one leg measures 6 in, what is the measure of the other two sides? The other leg measures 6 in. The hypotenuse measures $6\sqrt{2}$ in.	Find $\sin 60^{\circ}$ Using the unit circle: $\frac{\sqrt{3}}{2}$ Using a calculator: .866025
Measurement	
Find the distance between (-3, 7) and (4, 2) $\sqrt{(2-7)^2 + (4-(-3))^2} = \sqrt{74} \approx 8.6$	Find the volume of a cone with a radius of 6 in. and a height of 8 in. $V = \frac{1}{3}\pi r^2 h$ $\frac{1}{3}\pi (6)^2 (8) = 96\pi$